Session 2

Spectropolarimetry of solar prominences in He I 10830 Å with the Domeless Soler Telescope at Hida observatory

Y. Hashimoto, K. Ichimoto, S. UeNo, D. Cabezas, Y. Huang, D. Yamasaki, H. Shirato, Y. Matsuda Kyoto U.

The magnetic field is an important quantity for understanding the properties of solar prominences (or filaments); their structures are determined by magnetic fields, and thermal conduction and Alfven waves in prominences are controlled by magnetic fields. Polarimetry allows us to measure magnetic fields directly.

A new spectropolarimeter has been developed on DST (Domeless Solar Telescope) at Hida observatory. We observed several prominences in He I 10830 Å with spectral sampling about 0.03 Å. Our observations were made in the slit-scan mode, with the slit parallel to the limb. We integrated 80-100 images of 0.05-second exposure and obtained full Stokes profiles at each slit position. N/S of the polarization signal is 3×10^{-4} with respect to disk continuum, while in prominences N/S is about 1×10^{-3} with respect to peak intensity.

We performed Stokes inversions by using the inversion code HAZEL and constructed 2D maps of magnetic field vectors. As a result, the magnetic field in prominences is mostly between 10 and 20 G, but one of the prominences, which is the active-region prominence, has larger magnetic fields, up to 50 G. In this presentation, we introduce Stokes profiles of a few prominences and inversion results.